

PROGRAMA ANALITICO DE ASIGNATURA OBLIGATORIA

Carrera:	ARQUITECTURA
Plan de Estudios:	2009 (Resol. 849/09 CS)

Nombre de la Asignatura:	DISEÑO DE ESTRUCTURAS I
Encargado de curso:	Dr. Arq. Diego FERNANDEZ PAOLI (resol. 271/2023)
Año Académico:	2023 (vigencia s/resolución 082/2018 CD)
Código:	03.15

Régimen de Cursado:	ANUAL	
Carga Horaria Semanal:	5 HS.	
Teoría:	1.5 HS	
Práctica:	3.5 HS	
Programa basado en 30 s	semanas útiles	
Carga Horaria Total:		150 HS
Dedicación del estudiante fuera de clase:		2.5 HS
Total de horas presupuestadas:		225 HS
Créditos:		15

REGIMEN DE PROMOCION Y REGULARIZACION (de acuerdo con Res. 109/04 CD y 110/04 CD)

Concepto	Promoción	Regularización
Asistencia	80 %	70 %
Trabajos Prácticos Entregados	100 %	100 %
Trabajos Prácticos Aprobados	100 %	100 %
Evaluaciones Parciales Aprobadas	100 %	100 %

1

Otros (especificar)	3 PARCIALES	3 PARCIALES
	APROBADOS CON	APROBADOS CON
	PROMEDIO 8 O MAS	PROMEDIO 6 O MAS

EQUIPO DOCENTE (PT, PA, JTP y Auxiliares de Primera y Segunda)

Apellido y Nombre	Grado Académico	Cargo	Dedicación
FERNANDEZ PAOLI, Diego	Dr. Arquitecto	Profesor Adjunto a cargo	Semiexclusiva
ALVAREZ, Ramiro	Ingeniero	Profesor Adjunto	Semiexclusiva
VILLAR GARCIA, Damián	Arquitecto	Jefe de trabajos prácticos	Simple
GARIBAY, GONZALO	Ingeniero	Jefe de trabajos prácticos	Simple
BOCCACCIO, Florencia	Arquitecta	Jefe de trabajos prácticos	Semiexclusiva
MUSUMECCI, Fernando	Ingeniero		Simple

OBJETIVOS GENERALES

Conceptualizar el problema de los elementos estructurales hiperestáticos; sus ventajas y desventajas.

Aplicar los conceptos de continuidad en la resolución de solicitaciones en diferentes tipos de pórticos y vigas continuas. Principios de predimensionado.

Abordar el conocimiento de las particularidades del Hormigón Armado como material de construcción de estructuras y sus posibilidades de diseño.

Comprender el fenómeno tensional en el sentido precedentemente señalado.

Calcular y dimensionar en todas sus partes pequeñas intervenciones en este material.

Internalizar el problema de las fundaciones por las características de heterogeneidad del suelo.

DESCRIPCIÓN

El curso se propone la adquisición de un conocimiento operativo referido al comportamiento estáticoresistente y a los métodos de verificación y dimensionamiento necesarios a una correcta distribución e individualización de las componentes en una construcción.

Interesa desarrollar el concepto de "Sistema estructural" como respuesta "específica" a un preciso programa de solicitaciones estático-constructivas presente en un proyecto arquitectónico; "poniendo a punto" los instrumentos técnico-conceptuales necesarios tanto a la toma de determinaciones tipológicas (diseño estructural) como a la verificación y predeterminación de sus comportamientos críticos (dimensionado).

2

Asimismo, el curso afrontará el problema de la "estabilidad" a través del estudio analítico de obras de arquitectura emblemáticas al respecto, ya sea por la particularidad del cuadro de solicitaciones que presentan como el valor significativo adjudicado a los componentes (elementos y relaciones) del sistema estructural. Cada problema así asumido (problema de arquitectura) permitirá desarrollar fragmentos o cuestiones técnicas determinadas y su dominio operativo en función de una demanda específica (de arquitectura y de estabilidad)

CONTENIDOS GENERALES

- 1. Los materiales constitutivos del hormigón. Componentes del hormigón, resistencia, tipos de hormigón y acero.
- 2. Elementos estructurales en hormigón. Predimensionamiento. Cargas actuantes sobre las estructuras. Análisis y repartición de cargas.
- 3. Estructuras hiperestáticas. Importancia de la continuidad en los diferentes materiales. Su empleo en hormigón armado como parte del proceso de construcción en este material.
- 4. El fenómeno tensional en el hormigón armado. Secciones rectangulares y placas sometidas a flexión compuesta. Secciones de doble armadura simétrica. Compresión pura. Tensores. Esfuerzo de corte. Secciones de armaduras dobladas y estribos.
- 5. Estructuras aporticadas. Pórticos biarticulados y biempotrados. Influencia de las rigideces entre viga y soportes de un pórtico y su correspondencia con las solicitaciones. Pórticos de varios tramos y de pisos múltiples. Aspectos constructivos y formales.
- 6. Fundaciones. El suelo como material estructural. Resolución de diferentes tipos de bases en hormigón armado. Pozos romanos, pilotes, comportamiento y aspectos constructivos.
- 7 El uso de programas de computación simples para el cálculo de solicitaciones en diferentes tipos de diseños estructurales y de elementos hiperestáticos.

CONTENIDOS PARTICULARES (O TEMATICOS)

1° CUATRIMESTRE:

MARZO

13 a 18. Semana 1.

Presentación. Regímenes de cursado y aprobación. Armado de comisiones

20 a 24 Semana 2

<u>Clase teórica</u>: Tipologías estructurales en Hormigón Armado. Elementos componentes de la estructura, predimensionado.

<u>Clase práctica:</u> Predimensionado y cálculo de una estructura de hormigón armado: Definición de esquema estructural. Condicionantes arquitectónicas.

27 a 31 Semana 3

<u>Clase teórica</u>: Cargas actuantes sobre losas,, vigas y columnas.

<u>Clase práctica</u>: Predimensionado y cálculo de una estructura de hormigón armado: Definición de esquema estructural. Condicionantes arquitectónicas. Predimensionado de losas, vigas y columnas (método simplificado).

ABRIL

03 a 07 Semana 4

- <u>Clase práctica</u>: Predimensionado y cálculo de una estructura de hormigón armado: Definición de esquema estructural. Condicionantes arquitectónicas. Predimensionado de losas, vigas y columnas (método simplificado).
- b) Clase práctica:

Ejercicio de análisis de cargas en losas, vigas y columnas

10 a 14 Semana 5

Clase teórica: Continuidad en estructuras de hormigón armado.

Clase práctica:

- a) Ejercicio práctico de resolución de viga continua.
- b) Predimensionado y cálculo de una estructura de hormigón armado: Determinación de cargas actuantes en losas derechas y cruzadas, vigas simples y continuas.

TRABAJO PRACTICO 1 (primera parte)

Ejercicio Análisis estructural de una obra referencial con estructura de hormigón armado de mediana escala. (grupal) Búsqueda de ejemplos.

17 a 21 Semana 6

Hormigón Armado. Concepto y finalidad. Materiales componentes, resistencias.

Clase práctica:

 a) Predimensionado y cálculo de una estructura de hormigón armado: Calculo de solicitaciones en losas derechas y cruzadas.

TRABAJO PRACTICO 1: (primera parte)

Análisis estructural de una obra referencial con estructura de hormigón armado de mediana escala. (grupal) Generación de esquema estructural.

24 a 28 Semana 7

Clase práctica:

b) Predimensionado y cálculo de una estructura de hormigón armado: Calculo de solicitaciones en vigas simples y continuas.

TRABAJO PRACTICO 1: (primera parte)

Análisis estructural de una obra referencial con estructura de hormigón armado de mediana escala. (grupal) Generación de esquema estructural, despieces estructurales.

MAYO

01 a 05 Semana 8

<u>Clase teórica</u>: Teoría de cálculo a flexión simple en Hormigón Armado según Normas Cirsoc

Clase práctica:

- a) Ejercicio práctico de cálculo de losas derechas y cruzadas.
- b) Predimensionado y cálculo de una estructura de hormigón armado: Calculo de losas derechas y cruzadas, armaduras.

08 a 12 Semana 9

<u>Clase teórica</u>: Teoría de cálculo a flexión simple en Hormigón Armado según Normas Cirsoc Vigas placas y de gran altura.

Clase práctica:

- a) Ejercicio práctico de cálculo de viga placa.
- b) Predimensionado y cálculo de una estructura de hormigón armado: Calculo de vigas, armaduras.

15 a 19 Semana 10 CUARTO TURNO DE EXAMENES

22 a 26 Semana 11

<u>Clase teórica</u>: Teoría de cálculo a flexión simple en Hormigón Armado según Normas Cirsoc Vigas placas y de gran altura.

Clase práctica:

a) Predimensionado y cálculo de una estructura de hormigón armado: Calculo de vigas, armaduras. (continuación)

ENTREGA TRABAJO PRACTICO 1 (primera parte)

29 a 02 Semana 12

<u>Clase teórica</u>: Dimensionamiento a corte en vigas de hormigón armado:

Clase práctica:

- a) Ejercicio de verificación a corte en vigas.
- b) Predimensionado y cálculo de una estructura de hormigón armado: Verificación a corte en vigas

JUNIO

05 a 09 Semana 13

Clase práctica:

a) Predimensionado y cálculo de una estructura de hormigón armado: Verificación a corte en vigas. (continuación)

12 a 16 Semana 14

Clase práctica: Ejercitación para parcial. Consultas.

19 a 23 Semana 15

EVALUACION PARCIAL 1. Dimensionamiento y flexión en losas y vigas.

26 a 30 Semana 16

<u>Clase teórica</u>: Teoría de cálculo a flexión compuesta (flexión dominante) en Hormigón Armado según Normas Cirsoc. Entrepisos sin vigas. Concepto. Dimensionado rápido.

Clase práctica:

a) Predimensionado y cálculo de una estructura de hormigón armado: Calculo de vigas, armaduras. (continuación)

JULIO

03 a 07 Consultas

10 a 22 RECESO INVERNAL

24 a 28 QUINTO TURNO DE EXAMENES

AGOSTO

31 a 04 CONSULTAS

07 a 11 SEXTO TURNO DE EXAMENES

2° CUATRIMESTRE

14 a 18 Semana 1

Clase teórica: Flexión compuesta. Pórticos hiperestáticos. Solicitaciones

Clase práctica:

- a) Ejercicio de calculo de solicitaciones en pórticos.
- b) Predimensionado y cálculo de una estructura de hormigón armado: Planteo de un pórtico (estructura de transición) Determinación de cargas y solicitaciones.

TRABAJO PRACTICO 1: (segunda parte)

Calculo estructural de una obra referencial con estructura de hormigón armado de mediana escala. (grupal) Selección de un sector especifico. Cálculo de losas.

21 a 25 Semana 2

Clase práctica:

- a) Ejercicio de dimensionamiento de pórticos.
- b) Predimensionado y cálculo de una estructura de hormigón armado: Planteo de un pórtico (estructura de transición) Dimensionado.

TRABAJO PRACTICO 1: (segunda parte)

Calculo estructural de una obra referencial con estructura de hormigón armado de mediana escala. (grupal) Selección de un sector especifico. Cálculo de vigas.

28 a 01 Semana 3

<u>Clase teórica:</u> Dimensionamiento a compresión simple en columnas y tabiques de Hormigón armado:

Clase práctica:

- a) Ejercicio de cálculo de columnas.
- b) Predimensionado y cálculo de una estructura de hormigón armado: Calculo de columnas y tabiques.

TRABAJO PRACTICO 1: (segunda parte)

Calculo estructural de una obra referencial con estructura de hormigón armado de mediana escala. (grupal) Selección de un sector especifico. Calculo de columnas y tabiques.

SETIEMBRE

04 a 08 Semana 4

Clase teórica: Cimentaciones. Bases en hormigón armado:

Clase práctica:

- a) Ejercicio de cálculo de bases centradas y excéntricas.
- b) Predimensionado y cálculo de una estructura de hormigón armado: Calculo de bases.

11 a 15 Semana 5 SEPTIMO TURNO DE EXAMENES

18 a 22 Semana 6

Clase teórica: Cimentaciones. Bases en hormigón armado:

Clase práctica:

- a) Ejercicio de cálculo de bases con viga de equilibrio y unificadas.
- b) Predimensionado y cálculo de una estructura de hormigón armado: Calculo de bases.

25 a 29 Semana 7

<u>Clase teórica:</u> Fundaciones con pilotes. Submuraciones y recalces. Ejemplos

Clase práctica:

TRABAJO PRACTICO 1: (segunda parte)

Calculo estructural de una obra referencial con estructura de hormigón armado de mediana escala. (grupal) Selección de un sector especifico. Cálculo de bases. (continuación)

OCTUBRE

02 a 06 Semana 8

Clase práctica: Ejercitación para parcial. Consultas.

09 a 13 Semana 9

EVALUACION PARCIAL 2. Dimensionamiento de columnas y bases.

16 a 20 Semana 10

C<u>lase teórica:</u> Armado del legajo técnico. Plano de encofrados, planillas, planillas de doblado de hierros.

Clase práctica:

a) Predimensionado y cálculo de una estructura de hormigón armado: Armado de planos de encofrados y planillas de cálculo y de doblado. Trabajo grupal.

23 a 27 Semana 11

Clase práctica:

a) Predimensionado y cálculo de una estructura de hormigón armado: Armado de planos de encofrados y planillas de cálculo y de doblado. Trabajo grupal.

Consultas.

30 a 03 Semana 12

Recuperatorios.

NOVIEMBRE

06 a 10 Semana 13

Entrega TRABAJO PRACTICO N 1 (segunda parte)

Entrega del legajo técnico del ejemplo en clases. (grupal)

13 a 17 Cierre de listas alumnos promovidos, regulares y libres.

PAUTAS DE EVALUACION

Se realizarán en el ciclo 3 exámenes parciales de los temas indicados en el ítem contenidos generales con el fin de contar con una calificación individual de cada alumno. En estas instancias individuales le es permitido al alumno contar con material escrito de consulta Ejemplo: Tablas, Fórmulas.

Para PROMOVER la asignatura se exigen DOS exámenes parciales aprobados con promedio de OCHO o más de ocho y ninguno insuficiente (menos de SEIS). Existe una instancia de Recuperar un único examen parcial. Entrega y aprobación del trabajo practico 1 y del legajo técnico desarrollado en clases.

Para REGULARIZAR se exigen DOS exámenes parciales aprobados con calificación SEIS o más de SEIS y ninguno menos de cinco. Existe una instancia de Recuperar un único examen parcial. Entrega y aprobación del trabajo practico. Entrega y aprobación del trabajo practico 1 y del legajo técnico desarrollado en clases.

EXAMEN FINAL: rendirán examen final todos los alumnos que logren la condición de PROMOVIDO.

El EXAMEN FINAL para aquellos alumnos que sólo alcanzaron la condición de REGULAR consta de la resolución de un examen práctico que incluye todos los temas del curso.

El EXAMEN FINAL para los alumnos que rinden en condición de LIBRES consta de una instancia escrita/gráfica de diseño y pre-dimensionado de una estructura tipo de hormigón armado. Una vez aprobada esta instancia se pasa a otra de una resolución de un examen práctico que incluye todos los temas del programa.

BIBLIOGRAFIA BÁSICA (citar s/normas APA)

Perles, Pedro. 2009. Hormigón Armado TOMO I : Editorial: Nobuko Edición: Buenos Aires.

Perles, Pedro. 2009. Hormigón Armado TOMO II: Editorial: Nobuko Edición: Buenos Aires.

INTI-CIRSOC, 2005. Reglamento Argentino de Estructuras de Hormigón CIRSOC 201: Editorial: Instituto Nacional de Tecnología Industrial. Buenos Aires.

Möller Oscar. 2012. Hormigón Armado. Editorial: UNR Editora. Rosario.

Fernández Paoli, Diego. 2023. Estructuras en Hormigón Armado. Editorial: Material digital disponible en el espacio comunidades – UNR

BIBLIOGRAFIA COMPLEMENTARIA (citar s/normas APA)

Engels, Heinrich. 1979. Sistemas de estructuras, ed. Blume, Madrid. España. Material disponible digitalmente.

Siegel, Karl. 1979. Formas estructurales en la arquitectura moderna. Ed. Blume, Madrid, España.

Salvadori y Heller. 1974. Estructuras para arquitectos. Ed. La Isla.